Charge Detection Mass Spectrometry with Almost Perfect Charge Accuracy.

نویسندگان

  • David Z Keifer
  • Deven L Shinholt
  • Martin F Jarrold
چکیده

Charge detection mass spectrometry (CDMS) is a single-particle technique where the masses of individual ions are determined from simultaneous measurement of each ion's mass-to-charge ratio (m/z) and charge. CDMS has many desirable features: it has no upper mass limit, no mass discrimination, and it can analyze complex mixtures. However, the charge is measured directly, and the poor accuracy of the charge measurement has severely limited the mass resolution achievable with CDMS. Since the charge is quantized, it needs to be measured with sufficient accuracy to assign each ion to its correct charge state. This goal has now been largely achieved. By reducing the pressure to extend the trapping time and by implementing a novel analysis method that improves the signal-to-noise ratio and compensates for imperfections in the charge measurement, the uncertainty has been reduced to less than 0.20 e rmsd (root-mean-square deviation). With this unprecedented precision peaks due to different charge states are resolved in the charge spectrum. Further improvement can be achieved by quantizing the charge (rounding the measured charge to the nearest integer) and culling ions with measured charges midway between the integral values. After ions with charges more than one standard deviation from the mean are culled, the fraction of ions assigned to the wrong charge state is estimated to be 6.4 × 10(-5) (i.e., less than 1 in 15 000). Since almost all remaining ions are assigned to their correct charge state, the uncertainty in the mass is now almost entirely limited by the uncertainty in the m/z measurement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge detection mass spectrometry with resolved charge states.

Charge detection mass spectrometry (CDMS) measurements have been performed for cytochrome c and alcohol dehydrogenase (ADH) monomer using a modified cone trap incorporating a cryogenically cooled JFET. Cooling the JFET increases its transconductance and lowers thermal noise, improving the signal to noise (S/N) ratio. Single ions with as few as 9 elementary charges (e) have been detected. Accord...

متن کامل

Charge Detection Mass Spectrometry for Single Ions with an Uncertainty in the Charge Measurement of 0.65 e.

Charge detection mass spectrometry (CDMS) provides a direct measure of the mass of individual ions through nondestructive, simultaneous measurements of the mass to charge ratio and the charge. To improve the accuracy of the charge measurement, ions are trapped and recirculated through the charge detector. By substantially extending the trapping time, the uncertainty in the charge determination ...

متن کامل

BPDA2d - a 2D global optimization-based Bayesian peptide detection algorithm for liquid chromatograph-mass spectrometry

MOTIVATION Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other...

متن کامل

Image charge detection mass spectrometry: pushing the envelope with sensitivity and accuracy.

A novel image charge detection mass spectrometer (CDMS) with improved sensitivity and mass accuracy is described. The improved detector design and method of data analysis allow us to measure a reliable mass for a single macroion that is an order of magnitude smaller than previously achieved with CDMS. The apparatus employs an image charge detector array consisting of 22 detectors. The detectors...

متن کامل

Spectrophotometrc Methods for the Determination of Ambrisentan Using Charge Transfer Reagents

The color developing reaction between ambrisentan and 2,3-dichloro-5,6-dicyano-1,4- benzoquinone (DDQ) or 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (CLA) was successfully employed in the development of two simple and sensitive spectrophotometric methods (M1 and M2) for the determination of ambrisentan in its pharmaceutical dosage forms.The methods are based on the charge transfer reaction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 87 20  شماره 

صفحات  -

تاریخ انتشار 2015